Cart summary

You have no items in your shopping cart.

BLVRB Protein, Human, Recombinant (His)

BLVRB Protein, Human, Recombinant (His)

Catalog Number: orb1957165

DispatchUsually dispatched within 5-10 working days
$ 700.00
Catalog Numberorb1957165
CategoryProteins
DescriptionBiliverdin reductase (hBVR) is a serine/threonine kinase that catalyzes reduction of the heme oxygenase (HO) activity product, biliverdin, to bilirubin. BVR consists of an N-terminal dinucleotide-binding domain (Rossmann-fold) and a C-terminal domain that contains a six-stranded β-sheet that is flanked on one face by several α-helices. The C-terminal and N-terminal domains interact extensively, forming the active site cleft at their interface. Biliverdin reductase (BVR) catalyzes the last step in heme degradation by reducing the γ-methene bridge of the open tetrapyrrole, biliverdin IXα, to bilirubin with the concomitant oxidation of a β-nicotinamide adenine dinucleotide (NADH) or β-nicotinamide adenine dinucleotide phosphate (NADPH) cofactor. It is now recognized that human BVR (hBVR) is a dual-specificity kinase (Ser / Thr and Tyr) upstream activator of the insulin/insulin growth factor-1 (IGF-1) and mitogen-activated protein kinase (MAPK) signaling pathways. Human BVR (hBVR) is essential for MAPK-extracellular signal-regulated kinase (ERK)1/2 (MEK)-eukaryotic-like protein kinase (Elk) signaling and has been identified as the cytoplasm-nuclear heme transporter of ERK1/2 and hematin, the key components of stress-responsive gene expression.
TagN-His
Purity98.00%
MW23.5 kDa (predicted); 0 (reducing conditions)
UniProt IDP30043
Expression SystemE. coli
Biological OriginHuman
Biological ActivityBiliverdin reductase (hBVR) is a serine/threonine kinase that catalyzes reduction of the heme oxygenase (HO) activity product, biliverdin, to bilirubin. BVR consists of an N-terminal dinucleotide-binding domain (Rossmann-fold) and a C-terminal domain that contains a six-stranded β-sheet that is flanked on one face by several α-helices. The C-terminal and N-terminal domains interact extensively, forming the active site cleft at their interface. Biliverdin reductase (BVR) catalyzes the last step in heme degradation by reducing the γ-methene bridge of the open tetrapyrrole, biliverdin IXα, to bilirubin with the concomitant oxidation of a β-nicotinamide adenine dinucleotide (NADH) or β-nicotinamide adenine dinucleotide phosphate (NADPH) cofactor. It is now recognized that human BVR (hBVR) is a dual-specificity kinase (Ser / Thr and Tyr) upstream activator of the insulin/insulin growth factor-1 (IGF-1) and mitogen-activated protein kinase (MAPK) signaling pathways. Human BVR (hBVR) is essential for MAPK-extracellular signal-regulated kinase (ERK)1/2 (MEK)-eukaryotic-like protein kinase (Elk) signaling and has been identified as the cytoplasm-nuclear heme transporter of ERK1/2 and hematin, the key components of stress-responsive gene expression.
Expression RegionA DNA sequence encoding the human BLVRB (P30043) (Ala 2-Gln 206) was expressed, with a polyhistide tag at the N-terminus. Predicted N terminal: Met
Storage-20°C
NoteFor research use only
Application notesA Certificate of Analysis (CoA) containing reconstitution instructions is included with the products. Please refer to the CoA for detailed information.
Expiration Date6 months from date of receipt.