

Acetyl-CoA Carboxylase Microplate Assay Kit

Cat #: orb545618 (manual)

Detection and Quantification of Acetyl-CoA Carboxylase activity in Tissue extracts, Cell lysate, Cell culture media and Other biological fluids Samples.

For research use only. Not for diagnostic or therapeutic procedures.

www.biorbyt.com

INTRODUCTION

Acetyl-CoA carboxylase (ACC) is a biotin-dependent enzyme that catalyzes the irreversible carboxylation of acetyl-CoA to produce malonyl-CoA through its two catalytic activities, biotin carboxylase (BC) and carboxyltransferase (CT). ACC is a multi-subunit enzyme in most prokaryotes and in the chloroplasts of most plants and algae, whereas it is a large, multi-domain enzyme in the endoplasmic reticulum of most eukaryotes. The most important function of ACC is to provide the malonyl-CoA substrate for the biosynthesis of fatty acids. The activity of ACC can be controlled at the transcriptional level as well as by small molecule modulators and covalent modification.

Acetyl-CoA carboxylase can react with acetyl-CoA and ATP, the products are malonyl-CoA, ADP and inorganic phosphorus. The Acetyl-CoA carboxylase activity will be determined by the increase of inorganic phosphorus. At the end of the reaction period, the dye reagent forms a color with released phosphate, which is measured on a plate reader 635 nm.

KIT COMPONENTS

Component	Volume	Storage
96-Well Microplate	1 plate	
Assay Buffer	30 ml x 4	4 °C
Reaction Buffer	8 ml x 1	4 °C
Substrate	Powder x 1	-20 °C
Dye Reagent I	6 ml x 1	4 °C
Dye Reagent II	Powder x 1	4 °C
Dye Reagent II Diluent	9 ml x 1	4 °C
Standard (100 µmol/L)	1 ml x 1	4 °C
Plate Adhesive Strips	3 Strips	
Technical Manual	1 Manual	

Note:

Substrate: add 8 ml Reaction Buffer before use.

Dye Reagent II: add 9 ml Dye Reagent II Diluent and heat to dissolve before use, store at 4 °C.

Dye Reagent Working Solution: add 9 ml Dye Reagent II into 6 ml Dye Reagent I, mix, store at 4 °C for 2-3 days.

Explore. Bioreagents.

MATERIALS REQUIRED BUT NOT PROVIDED

- 1. Microplate reader to read absorbance at 635 nm
- 2. Distilled water
- 3. Pipettor, multi-channel pipettor
- 4. Pipette tips
- 5. Mortar
- 6. Ice
- 7. Centrifuge
- 8. Timer

SAMPLE PREPARATION

1. For cell and bacteria samples

Collect cell or bacteria into centrifuge tube, discard the supernatant after centrifugation, add 1 ml Assay buffer for 5×10^6 cell or bacteria, sonicate (with power 20%, sonicate 3s, interval 10s, repeat 30 times); centrifuged at 8000g~4 °C for 10 minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection.

2. For tissue samples

Weigh out 0.1 g tissue, homogenize with 1 ml Assay buffer on ice, centrifuged at 8000g 4 °C for 10 minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection.

ASSAY PROCEDURE

Add following reagents into the microcentrifuge tubes:

Reagent	Sample	Control	Standard	Blank		
Sample	20 μl					
Assay Buffer		20 μl				
Substrate	80 μl	80 μ1				
Mix, put it in the oven, 37 °C for 30 minutes. Then put it in boiling water for 5 minutes. When cold,						
centrifuged at 10000g, room temperature for 5 minutes. Add following reagents into the 96-Well						
microplate.						

Standard			50 μl			
Distilled water				50 μl		
Supernatant	50 μl	50 μl				
Dye Reagent Working Solution	150 μl	150 μl	150 μl	150 μl		

Mix, room temperature for 5 minutes, record absorbance measured at 635nm.

Note:

- 1) It is best to use disposable plastic tube to avoid phosphorus pollution.
- 2) Perform 2-fold serial dilutions of the top standards to make the standard curve.
- 3) For unknown samples, we recommend doing a pilot experiment & testing several doses to ensure the readings are within the standard curve range. If the enzyme activity is lower, please add more sample into the reaction system; or increase the reaction time; if the enzyme activity is higher, please dilute the sample, or decrease the reaction time.

Explore. Bioreagents.

CALCULATION

Unit Definition: One unit of Acetyl-CoA Carboxylase activity is defined as the enzyme generates 1 nmol of PO₄³⁻ per hour.

1. According to the protein concentration of sample

$$\begin{split} & ACC \; (U/mg) = \left(C_{Standard} \times V_{Standard} \right) \times \left(OD_{Sample} \; \text{--} \; OD_{Control} \right) / \left(OD_{Standard} \; \text{--} \; OD_{Blank} \right) / \left(V_{Sample} \times C_{Protein} \right) / \; T \times \\ & 2 \\ & = 400 \times \left(OD_{Sample} \; \text{--} \; OD_{Control} \right) / \left(OD_{Standard} \; \text{--} \; OD_{Blank} \right) / \; C_{Protein} \end{split}$$

2. According to the weight of sample

$$\begin{split} & ACC \; (U/g) = \left(C_{Standard} \times V_{Standard} \right) \times \left(OD_{Sample} \; \text{--}\; OD_{Control} \right) / \left(OD_{Standard} \; \text{--}\; OD_{Blank} \right) / \left(W \times V_{Sample} \; / \; V_{Assay} \right) / \; T \times \\ & \qquad \qquad 2 \\ & = 400 \times \left(OD_{Sample} \; \text{--}\; OD_{Control} \right) / \left(OD_{Standard} \; \text{--}\; OD_{Blank} \right) / \; W \end{split}$$

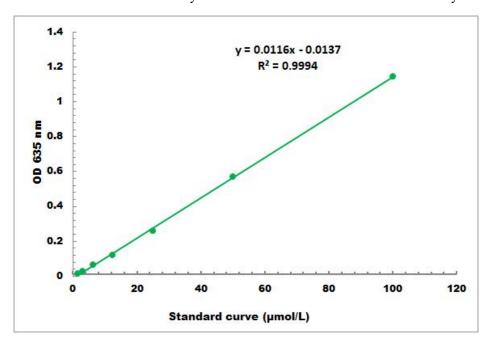
C_{Protein}: the protein concentration, mg/ml;

W: the weight of sample, g;

 $C_{Standard}$: the concentration of Standard, 100 μ mol/L = 100 nmol/ml;

V_{Standard}: the volume of the Standard, 0.05 ml;

V_{Sample}: the volume of sample, 0.05 ml;


V_{Assay}: the volume of Assay buffer, 1 ml;

T: the reaction time, 0.5 h.

TYPICAL DATA

The standard curve is for demonstration only. A standard curve must be run with each assay.

Detection Range: 1 μmol/L - 100 μmol/L