PCR Clean-Up \& Gel Extraction Kit

Cat\#: orb180505 (Product Manual)

Sample: Up to $100 \mu \mathrm{l}$ of the PCR Product 300 mg of the Agarose Gel
Recovery: Up to 95\%

Description

The PCR Clean-Up \& Gel Extraction Kit provides a cost-effective system for the fast and easy isolation of the DNA fragments from PCR reactions, agarose gels, or enzymatic reactions. The DNA fragments (100bp~10Kb) in the special buffers are bound by the glass fiber matrix of the spin column while contaminants pass through the column. Impurities are efficiently washed away, and the pure DNA is eluted with the Tris buffer or water without phenol extraction or alcohol precipitation. The DNA purified with the kits is suitable for any subsequent application, such as ligation and transformation, sequencing, restriction enzyme digestion, labeling, PCR, in vitro transcription, or microinjection. The entire procedure can be completed within 15~20 minutes.

Kit Contents

Contents	PDC01-0100	PDC01-0100S
Buffer B	60 ml	2 ml
Buffer W1	45 ml	2 ml
Buffer W2 (Add ethanol)	$15 \mathrm{ml}(60 \mathrm{ml})$	$300 \mu \mathrm{l} \mathrm{x} 2(1.2 \mathrm{ml} \times 2)$
Buffer E	10 ml	1 ml
Column PG	100 pcs	4 pcs
Collection Tubes	100 pcs	4 pcs

Quality Control

The quality of the PCR Clean-Up \& Gel Extraction Kit is tested on a lot-to-lot basis to ensure consistent product quality.

Required Materials

$>$ Ethanol (96~100\%)
> 1.5 ml microcentrifuge tubes
> Water bath / Dry bath

Buffer Preparation

Add 60 ml of the ethanol $\left(96^{\sim} 100 \%\right)$ to the Buffer W2 and shake before use.
PCR Clean-Up \& Gel Extraction Protocol

Step 1 Sample Preparation

PCR Clean Up

1. Add 500μ l of the Buffer B to 100μ l of the PCR product and mix by vortex.

Gel Extraction

1. Excise the DNA fragment from the agarose gel.
2. Transfer up to 300 mg of the gel slice to a 1.5 ml microcentrifuge tube.
3. Add $500 \mu \mathrm{l}$ of the Buffer B to the sample and mix by vortex.
4. Incubate at $60^{\circ} \mathrm{C}$ for 10 minutes (or until the gel slice has completely dissolved). During the incubation, mix by vortexing the tube every $2 \sim 3$ minutes.
5. Cool the dissolved sample mixture to the room temperature.

Step 2 Binding

1. Place a Column PG in a Collection Tube. Apply the supernatant (from step 1) to the Column PG by decanting or pipetting.
2. Centrifuge at $14,000 \times \mathrm{g}$ for 30 seconds.
3. Discard the flow-through and place the Column PG back into the same collection tube.

* The maximum volume of the Column PG reservoir is $800 \mu \mathrm{l}$. If the sample mixture is more than $800 \mu \mathrm{l}$, repeat the DNA Binding Step.

Step 3 Wash

1. Add $400 \mu \mathrm{l}$ of the Buffer W 1 into the Column PG.
2. Centrifuge at $14,000 \times \mathrm{g}$ for 30 seconds.
3. Discard the flow-through and place the Column PG back into the same collection tube.
4. Add 600μ l of the Buffer W2 (ethanol added) into the Column PG.
5. Centrifuge at $14,000 \times$ g for 30 seconds.
6. Discard the flow-through and place the Column PG back into the same collection tube.
7. Centrifuge at $14,000 \times g$ again for 2 minutes to remove the residual Buffer W2.

Step 4 Elution

1. To elute the DNA, place the Column PG in a clean 1.5 ml microcentrifuge tube.
2. Add $50-200 \mu$ l of the Buffer E or H 2 O (pH is between 7.0 and 8.5) to the center of each

Column PG, let it stand for 2 minutes, and centrifuge at $14,000 \times \mathrm{g}$ for 2 minutes.
$>$ Check the buffers before use for salt precipitation. Redissolve any precipitate by warming to $37^{\circ} \mathrm{C}$.

Troubleshooting

Problem	Cause	Solution
Low yields of DNA	Buffer B with the incorrect ratio added to the amplification reaction	Verify that an equal volume of the Buffer B was added to the reaction.
	\square	before use.
	Nuclease contamination	Check buffers for nuclease contamination and replace if necessary. Use the new glass and plastic wares, and wear gloves
	Column overloaded	Decrease the loading volume. If overloaded, separate into 2 columns. If the DNA fragments are more than 300 mg , separate the gel slice into two microcentrifuge tubes.
	Dissolved incompletely	Increase time for the Gel Extraction Step until the gel slice has completely dissolved. Use an equal volume of the Buffer B and/ or low-melting-point agarose gels.
	Incorrect elution conditions	Ensure that the Buffer E or ddH2Ois added into the center of the Column PG.
	Recovery buffer volume too small	Increase the amount of the Buffer E to at least $50 \mu \mathrm{l}$ for use.
Inhibition of downstream enzymatic reactions	TE buffer used for DNA elution	Use the ethanol to precipitate the DNA, or repurify the DNA fragments and elute with the nuclease-free water.
	Presence of residual	Remove the EtOH in the hood briefly.

	ethanol in plasmid	Following the Wash step, dry the Column PG with additional centrifugation at $14 \sim 16,000 \mathrm{x}$ g for 2 minutes.
DNA passed through in the flow-through or wash	Column overloaded	Check the loading volume. If overloaded, separate into two columns.
fraction	Inappropriate salt or pH conditions in buffers	Ensure that any buffer prepared in the laboratory was prepared according to the instructions.
Purified DNA floats out of wells while running in agarose gel	Traces of ethanol not completely removed from the column	Make sure that no residual ethanol remains in the membrane before eluting the plasmid DNA. Re-centrifuge if necessary.

Caution

> During operation, always wear a lab coat, disposable gloves, and protective equipment.
$>$ Check Buffers before use for salt precipitation. Redissolve any precipitate by warming to $37^{\circ} \mathrm{C}$.
> Buffers B and W1 contain irritants. Wear gloves when handling these buffers.
$>$ Add 60 ml of the ethanol (96~100\%) to the Buffer W2 and shake before use.
> Research Use Only. Not intended for any animal or human therapeutic or diagnostic uses.

